Serveur d'exploration sur la COVID en France

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.

Identifieur interne : 000536 ( Main/Exploration ); précédent : 000535; suivant : 000537

Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.

Auteurs : Jacques Fantini [France] ; Henri Chahinian [France] ; Nouara Yahi [France]

Source :

RBID : pubmed:32862840

Descripteurs français

English descriptors

Abstract

The emergence of SARS-coronavirus-2 (SARS-CoV-2) has led to a global pandemic disease referred to as coronavirus disease 19 (COVID-19). Hydroxychloroquine (CLQ-OH)/azithromycin (ATM) combination therapy is currently being tested for the treatment of COVID-19, with promising results. However, the molecular mechanism of action of this combination is not yet established. Using molecular dynamics (MD) simulations, this study shows that the drugs act in synergy to prevent any close contact between the virus and the plasma membrane of host cells. Unexpected molecular similarity is shown between ATM and the sugar moiety of GM1, a lipid raft ganglioside acting as a host attachment cofactor for respiratory viruses. Due to this mimicry, ATM interacts with the ganglioside-binding domain of SARS-CoV-2 spike protein. This binding site shared by ATM and GM1 displays a conserved amino acid triad Q-134/F-135/N-137 located at the tip of the spike protein. CLQ-OH molecules are shown to saturate virus attachment sites on gangliosides in the vicinity of the primary coronavirus receptor, angiotensin-converting enzyme-2 (ACE-2). Taken together, these data show that ATM is directed against the virus, whereas CLQ-OH is directed against cellular attachment cofactors. We conclude that both drugs act as competitive inhibitors of SARS-CoV-2 attachment to the host-cell membrane. This is consistent with a synergistic antiviral mechanism at the plasma membrane level, where therapeutic intervention is likely to be most efficient. This molecular mechanism may explain the beneficial effects of CLQ-OH/ATM combination therapy in patients with COVID-19. Incidentally, the data also indicate that the conserved Q-134/F-135/N-137 triad could be considered as a target for vaccine strategies.

DOI: 10.1016/j.ijantimicag.2020.106020
PubMed: 32862840


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.</title>
<author>
<name sortKey="Fantini, Jacques" sort="Fantini, Jacques" uniqKey="Fantini J" first="Jacques" last="Fantini">Jacques Fantini</name>
<affiliation wicri:level="3">
<nlm:affiliation>INSERM UMR_S 1072, 13015 Marseille, France. Electronic address: jm.fantini@gmail.com.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM UMR_S 1072, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chahinian, Henri" sort="Chahinian, Henri" uniqKey="Chahinian H" first="Henri" last="Chahinian">Henri Chahinian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix-Marseille Université, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix-Marseille Université, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yahi, Nouara" sort="Yahi, Nouara" uniqKey="Yahi N" first="Nouara" last="Yahi">Nouara Yahi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix-Marseille Université, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix-Marseille Université, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32862840</idno>
<idno type="pmid">32862840</idno>
<idno type="doi">10.1016/j.ijantimicag.2020.106020</idno>
<idno type="wicri:Area/Main/Corpus">000301</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000301</idno>
<idno type="wicri:Area/Main/Curation">000301</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000301</idno>
<idno type="wicri:Area/Main/Exploration">000301</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.</title>
<author>
<name sortKey="Fantini, Jacques" sort="Fantini, Jacques" uniqKey="Fantini J" first="Jacques" last="Fantini">Jacques Fantini</name>
<affiliation wicri:level="3">
<nlm:affiliation>INSERM UMR_S 1072, 13015 Marseille, France. Electronic address: jm.fantini@gmail.com.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>INSERM UMR_S 1072, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
</affiliation>
</author>
<author>
<name sortKey="Chahinian, Henri" sort="Chahinian, Henri" uniqKey="Chahinian H" first="Henri" last="Chahinian">Henri Chahinian</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix-Marseille Université, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix-Marseille Université, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
<author>
<name sortKey="Yahi, Nouara" sort="Yahi, Nouara" uniqKey="Yahi N" first="Nouara" last="Yahi">Nouara Yahi</name>
<affiliation wicri:level="4">
<nlm:affiliation>Aix-Marseille Université, 13015 Marseille, France.</nlm:affiliation>
<country xml:lang="fr">France</country>
<wicri:regionArea>Aix-Marseille Université, 13015 Marseille</wicri:regionArea>
<placeName>
<region type="region" nuts="2">Provence-Alpes-Côte d'Azur</region>
<settlement type="city">Marseille</settlement>
</placeName>
<orgName type="university">Université d'Aix-Marseille</orgName>
</affiliation>
</author>
</analytic>
<series>
<title level="j">International journal of antimicrobial agents</title>
<idno type="eISSN">1872-7913</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Amino Acid Sequence (MeSH)</term>
<term>Antiviral Agents (pharmacology)</term>
<term>Azithromycin (pharmacology)</term>
<term>Betacoronavirus (drug effects)</term>
<term>Betacoronavirus (metabolism)</term>
<term>Binding Sites (drug effects)</term>
<term>Coronavirus Infections (drug therapy)</term>
<term>Drug Synergism (MeSH)</term>
<term>Drug Therapy, Combination (methods)</term>
<term>G(M1) Ganglioside (metabolism)</term>
<term>Host-Pathogen Interactions (drug effects)</term>
<term>Humans (MeSH)</term>
<term>Hydroxychloroquine (pharmacology)</term>
<term>Molecular Dynamics Simulation (MeSH)</term>
<term>Pandemics (MeSH)</term>
<term>Peptidyl-Dipeptidase A (metabolism)</term>
<term>Pneumonia, Viral (drug therapy)</term>
<term>Protein Binding (drug effects)</term>
<term>Protein Domains (drug effects)</term>
<term>Sequence Alignment (MeSH)</term>
<term>Spike Glycoprotein, Coronavirus (metabolism)</term>
<term>Virus Attachment (drug effects)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>Alignement de séquences (MeSH)</term>
<term>Antiviraux (pharmacologie)</term>
<term>Association de médicaments (méthodes)</term>
<term>Attachement viral (effets des médicaments et des substances chimiques)</term>
<term>Azithromycine (pharmacologie)</term>
<term>Betacoronavirus (effets des médicaments et des substances chimiques)</term>
<term>Betacoronavirus (métabolisme)</term>
<term>Domaines protéiques (effets des médicaments et des substances chimiques)</term>
<term>Ganglioside GM1 (métabolisme)</term>
<term>Glycoprotéine de spicule des coronavirus (métabolisme)</term>
<term>Humains (MeSH)</term>
<term>Hydroxychloroquine (pharmacologie)</term>
<term>Infections à coronavirus (traitement médicamenteux)</term>
<term>Interactions hôte-pathogène (effets des médicaments et des substances chimiques)</term>
<term>Liaison aux protéines (effets des médicaments et des substances chimiques)</term>
<term>Pandémies (MeSH)</term>
<term>Peptidyl-Dipeptidase A (métabolisme)</term>
<term>Pneumopathie virale (traitement médicamenteux)</term>
<term>Simulation de dynamique moléculaire (MeSH)</term>
<term>Sites de fixation (effets des médicaments et des substances chimiques)</term>
<term>Synergie des médicaments (MeSH)</term>
<term>Séquence d'acides aminés (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="metabolism" xml:lang="en">
<term>G(M1) Ganglioside</term>
<term>Peptidyl-Dipeptidase A</term>
<term>Spike Glycoprotein, Coronavirus</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Antiviral Agents</term>
<term>Azithromycin</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Betacoronavirus</term>
<term>Binding Sites</term>
<term>Host-Pathogen Interactions</term>
<term>Protein Binding</term>
<term>Protein Domains</term>
<term>Virus Attachment</term>
</keywords>
<keywords scheme="MESH" qualifier="drug therapy" xml:lang="en">
<term>Coronavirus Infections</term>
<term>Pneumonia, Viral</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Attachement viral</term>
<term>Betacoronavirus</term>
<term>Domaines protéiques</term>
<term>Interactions hôte-pathogène</term>
<term>Liaison aux protéines</term>
<term>Sites de fixation</term>
</keywords>
<keywords scheme="MESH" qualifier="metabolism" xml:lang="en">
<term>Betacoronavirus</term>
</keywords>
<keywords scheme="MESH" qualifier="methods" xml:lang="en">
<term>Drug Therapy, Combination</term>
</keywords>
<keywords scheme="MESH" qualifier="métabolisme" xml:lang="fr">
<term>Betacoronavirus</term>
<term>Ganglioside GM1</term>
<term>Glycoprotéine de spicule des coronavirus</term>
<term>Peptidyl-Dipeptidase A</term>
</keywords>
<keywords scheme="MESH" qualifier="méthodes" xml:lang="fr">
<term>Association de médicaments</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Antiviraux</term>
<term>Azithromycine</term>
<term>Hydroxychloroquine</term>
</keywords>
<keywords scheme="MESH" qualifier="traitement médicamenteux" xml:lang="fr">
<term>Infections à coronavirus</term>
<term>Pneumopathie virale</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Amino Acid Sequence</term>
<term>Drug Synergism</term>
<term>Humans</term>
<term>Molecular Dynamics Simulation</term>
<term>Pandemics</term>
<term>Sequence Alignment</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>Alignement de séquences</term>
<term>Humains</term>
<term>Pandémies</term>
<term>Simulation de dynamique moléculaire</term>
<term>Synergie des médicaments</term>
<term>Séquence d'acides aminés</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The emergence of SARS-coronavirus-2 (SARS-CoV-2) has led to a global pandemic disease referred to as coronavirus disease 19 (COVID-19). Hydroxychloroquine (CLQ-OH)/azithromycin (ATM) combination therapy is currently being tested for the treatment of COVID-19, with promising results. However, the molecular mechanism of action of this combination is not yet established. Using molecular dynamics (MD) simulations, this study shows that the drugs act in synergy to prevent any close contact between the virus and the plasma membrane of host cells. Unexpected molecular similarity is shown between ATM and the sugar moiety of GM1, a lipid raft ganglioside acting as a host attachment cofactor for respiratory viruses. Due to this mimicry, ATM interacts with the ganglioside-binding domain of SARS-CoV-2 spike protein. This binding site shared by ATM and GM1 displays a conserved amino acid triad Q-134/F-135/N-137 located at the tip of the spike protein. CLQ-OH molecules are shown to saturate virus attachment sites on gangliosides in the vicinity of the primary coronavirus receptor, angiotensin-converting enzyme-2 (ACE-2). Taken together, these data show that ATM is directed against the virus, whereas CLQ-OH is directed against cellular attachment cofactors. We conclude that both drugs act as competitive inhibitors of SARS-CoV-2 attachment to the host-cell membrane. This is consistent with a synergistic antiviral mechanism at the plasma membrane level, where therapeutic intervention is likely to be most efficient. This molecular mechanism may explain the beneficial effects of CLQ-OH/ATM combination therapy in patients with COVID-19. Incidentally, the data also indicate that the conserved Q-134/F-135/N-137 triad could be considered as a target for vaccine strategies.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32862840</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>09</Month>
<Day>07</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>09</Month>
<Day>07</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1872-7913</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>56</Volume>
<Issue>2</Issue>
<PubDate>
<Year>2020</Year>
<Month>Aug</Month>
</PubDate>
</JournalIssue>
<Title>International journal of antimicrobial agents</Title>
<ISOAbbreviation>Int. J. Antimicrob. Agents</ISOAbbreviation>
</Journal>
<ArticleTitle>Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.</ArticleTitle>
<Pagination>
<MedlinePgn>106020</MedlinePgn>
</Pagination>
<ELocationID EIdType="pii" ValidYN="Y">S0924-8579(20)30183-7</ELocationID>
<ELocationID EIdType="doi" ValidYN="Y">10.1016/j.ijantimicag.2020.106020</ELocationID>
<Abstract>
<AbstractText>The emergence of SARS-coronavirus-2 (SARS-CoV-2) has led to a global pandemic disease referred to as coronavirus disease 19 (COVID-19). Hydroxychloroquine (CLQ-OH)/azithromycin (ATM) combination therapy is currently being tested for the treatment of COVID-19, with promising results. However, the molecular mechanism of action of this combination is not yet established. Using molecular dynamics (MD) simulations, this study shows that the drugs act in synergy to prevent any close contact between the virus and the plasma membrane of host cells. Unexpected molecular similarity is shown between ATM and the sugar moiety of GM1, a lipid raft ganglioside acting as a host attachment cofactor for respiratory viruses. Due to this mimicry, ATM interacts with the ganglioside-binding domain of SARS-CoV-2 spike protein. This binding site shared by ATM and GM1 displays a conserved amino acid triad Q-134/F-135/N-137 located at the tip of the spike protein. CLQ-OH molecules are shown to saturate virus attachment sites on gangliosides in the vicinity of the primary coronavirus receptor, angiotensin-converting enzyme-2 (ACE-2). Taken together, these data show that ATM is directed against the virus, whereas CLQ-OH is directed against cellular attachment cofactors. We conclude that both drugs act as competitive inhibitors of SARS-CoV-2 attachment to the host-cell membrane. This is consistent with a synergistic antiviral mechanism at the plasma membrane level, where therapeutic intervention is likely to be most efficient. This molecular mechanism may explain the beneficial effects of CLQ-OH/ATM combination therapy in patients with COVID-19. Incidentally, the data also indicate that the conserved Q-134/F-135/N-137 triad could be considered as a target for vaccine strategies.</AbstractText>
<CopyrightInformation>Copyright © 2020 Elsevier Ltd. All rights reserved.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Fantini</LastName>
<ForeName>Jacques</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>INSERM UMR_S 1072, 13015 Marseille, France. Electronic address: jm.fantini@gmail.com.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Chahinian</LastName>
<ForeName>Henri</ForeName>
<Initials>H</Initials>
<AffiliationInfo>
<Affiliation>Aix-Marseille Université, 13015 Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yahi</LastName>
<ForeName>Nouara</ForeName>
<Initials>N</Initials>
<AffiliationInfo>
<Affiliation>Aix-Marseille Université, 13015 Marseille, France.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>05</Month>
<Day>13</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>Netherlands</Country>
<MedlineTA>Int J Antimicrob Agents</MedlineTA>
<NlmUniqueID>9111860</NlmUniqueID>
<ISSNLinking>0924-8579</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D000998">Antiviral Agents</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D064370">Spike Glycoprotein, Coronavirus</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="C000657845">spike protein, SARS-CoV-2</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>37758-47-7</RegistryNumber>
<NameOfSubstance UI="D005677">G(M1) Ganglioside</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>4QWG6N8QKH</RegistryNumber>
<NameOfSubstance UI="D006886">Hydroxychloroquine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>83905-01-5</RegistryNumber>
<NameOfSubstance UI="D017963">Azithromycin</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.15.1</RegistryNumber>
<NameOfSubstance UI="D007703">Peptidyl-Dipeptidase A</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>EC 3.4.17.-</RegistryNumber>
<NameOfSubstance UI="C413524">angiotensin converting enzyme 2</NameOfSubstance>
</Chemical>
</ChemicalList>
<SupplMeshList>
<SupplMeshName Type="Disease" UI="C000657245">COVID-19</SupplMeshName>
<SupplMeshName Type="Protocol" UI="C000705127">COVID-19 drug treatment</SupplMeshName>
<SupplMeshName Type="Organism" UI="C000656484">severe acute respiratory syndrome coronavirus 2</SupplMeshName>
</SupplMeshList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000595" MajorTopicYN="N">Amino Acid Sequence</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000998" MajorTopicYN="N">Antiviral Agents</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="N">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D017963" MajorTopicYN="N">Azithromycin</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000073640" MajorTopicYN="N">Betacoronavirus</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001665" MajorTopicYN="N">Binding Sites</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018352" MajorTopicYN="N">Coronavirus Infections</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004357" MajorTopicYN="N">Drug Synergism</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D004359" MajorTopicYN="N">Drug Therapy, Combination</DescriptorName>
<QualifierName UI="Q000379" MajorTopicYN="N">methods</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D005677" MajorTopicYN="N">G(M1) Ganglioside</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D054884" MajorTopicYN="N">Host-Pathogen Interactions</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006801" MajorTopicYN="N">Humans</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D006886" MajorTopicYN="N">Hydroxychloroquine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D056004" MajorTopicYN="N">Molecular Dynamics Simulation</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D058873" MajorTopicYN="N">Pandemics</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007703" MajorTopicYN="N">Peptidyl-Dipeptidase A</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="N">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011024" MajorTopicYN="N">Pneumonia, Viral</DescriptorName>
<QualifierName UI="Q000188" MajorTopicYN="Y">drug therapy</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D011485" MajorTopicYN="N">Protein Binding</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000072417" MajorTopicYN="N">Protein Domains</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D016415" MajorTopicYN="N">Sequence Alignment</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D064370" MajorTopicYN="N">Spike Glycoprotein, Coronavirus</DescriptorName>
<QualifierName UI="Q000378" MajorTopicYN="Y">metabolism</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D053585" MajorTopicYN="N">Virus Attachment</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">Azithromycin</Keyword>
<Keyword MajorTopicYN="N">Chloroquine</Keyword>
<Keyword MajorTopicYN="N">Coronavirus</Keyword>
<Keyword MajorTopicYN="N">Ganglioside</Keyword>
<Keyword MajorTopicYN="N">Pandemic</Keyword>
<Keyword MajorTopicYN="N">SARS-CoV-2</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>04</Month>
<Day>03</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>04</Month>
<Day>19</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>05</Month>
<Day>04</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>9</Month>
<Day>1</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>8</Month>
<Day>31</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>9</Month>
<Day>8</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32862840</ArticleId>
<ArticleId IdType="pii">S0924-8579(20)30183-7</ArticleId>
<ArticleId IdType="doi">10.1016/j.ijantimicag.2020.106020</ArticleId>
</ArticleIdList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>France</li>
</country>
<region>
<li>Provence-Alpes-Côte d'Azur</li>
</region>
<settlement>
<li>Marseille</li>
</settlement>
<orgName>
<li>Université d'Aix-Marseille</li>
</orgName>
</list>
<tree>
<country name="France">
<region name="Provence-Alpes-Côte d'Azur">
<name sortKey="Fantini, Jacques" sort="Fantini, Jacques" uniqKey="Fantini J" first="Jacques" last="Fantini">Jacques Fantini</name>
</region>
<name sortKey="Chahinian, Henri" sort="Chahinian, Henri" uniqKey="Chahinian H" first="Henri" last="Chahinian">Henri Chahinian</name>
<name sortKey="Yahi, Nouara" sort="Yahi, Nouara" uniqKey="Yahi N" first="Nouara" last="Yahi">Nouara Yahi</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Sante/explor/CovidFranceV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000536 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000536 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Sante
   |area=    CovidFranceV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32862840
   |texte=   Synergistic antiviral effect of hydroxychloroquine and azithromycin in combination against SARS-CoV-2: What molecular dynamics studies of virus-host interactions reveal.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32862840" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a CovidFranceV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Oct 6 23:31:36 2020. Site generation: Fri Feb 12 22:48:37 2021